Math 210C Lecture 18 Notes

Daniel Raban

May 13, 2019

1 Derived Functors and Injective Resolutions

1.1 Left derived functors

Let \mathcal{C} be an abelian category. Let $F : \mathcal{C} \to \mathcal{D}$ be an additive functor of abelian categories and let $f : P \to Q$ in \mathcal{C} . Then $F(f_*) : H_i(F(P)) \to H_i(F(Q))$ is "well-defined" in \mathcal{D} .

Proposition 1.1. Let $F : \mathcal{C} \to \mathcal{D}$ be an additive functor. For each $A \in \mathcal{C}$, choose a projective resolution $P^A \to A$. For each A : A to B choose $f : P^A \to P^B$ augmenting g. Then $L_iF : \mathcal{C} \to \mathcal{D}$ given by $L_iF(A) = H_i(F(P^A))$ and $L_iF(g) = F(f_*)$ is a functor (unique up to unique isomorphism).

Definition 1.1. L_iF is called the *i*-th left derived functor of F.

Proof. This mostly follows from a proposition from last time. Check the remaining properties, such as composition. \Box

Lemma 1.1. If F is right exact, then $L_0F \cong F$.

Proof. Let $P_0 \to A \in \mathcal{C}$ in a projective resolution of A. Then $L_iF(A) = H_iF(P_i)$, so $L_0F(A) = H_0(F(P_i))$, so

$$P_1 \longrightarrow P_0 \xrightarrow{\varepsilon} A \longrightarrow 0$$

gives

$$F(P_1) \xrightarrow{F(d_1)} F(P_0) \xrightarrow{\varepsilon} F(A) \longrightarrow 0$$

Then

$$H_0(F(P_{\cdot})) = \operatorname{coker}(F(d_1)) \xrightarrow{\cong} F(A)$$
$$\downarrow^{F(f)_*} \qquad \qquad \downarrow^{F(g)}$$
$$H_0(F(Q_{\cdot})) \xrightarrow{\cong} F(B)$$

and the left hand side of this diagram is actually

$$L_0 F(A)$$

$$\downarrow_{L_0 F(g)} \square$$

$$L_0 F(B)$$

Theorem 1.1. Let $F : \mathcal{C} \to \mathcal{D}$ be right exact. For each short exact sequence

 $0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$

in C, there exists a long exact sequence

$$\cdots \longrightarrow L_2 F(C) \xrightarrow{\delta} L_1 F(A) \longrightarrow L_1 F(B) \longrightarrow L_1 F(C)$$

$$\xrightarrow{\delta} F(A) \xleftarrow{} F(B) \longrightarrow F(C) \longrightarrow 0$$

which is natural in the short exact sequence (morphism of δ -functors): if

then

$$L_{i+1}F(C) \xrightarrow{\delta} L_iF(A)$$

$$\downarrow \qquad \qquad \downarrow$$

$$L_{i+1}F(C') \xrightarrow{\delta} L_{i+1}F(A')$$

Remark 1.1. This functor $(L_i F, \delta_i)_i$ satisfies a universal property and is called a δ -functor.

Proof. If we have a short exact sequence of complexes

 $0 \longrightarrow P^A_{\cdot} \longrightarrow P^B_{\cdot} \longrightarrow P^C_{\cdot} \longrightarrow 0$

this stays exact since $P^B_i = P^A_i \oplus P^C_i$ and F is additive:

$$0 \longrightarrow F(P^A_{\cdot}) \longrightarrow F(P^B_{\cdot}) \longrightarrow F(P^C_{\cdot}) \longrightarrow 0$$

So we get a long exact sequence on cohomology

$$\cdots \longrightarrow H_{i+1}(F(P^C)) \xrightarrow{\delta} H_i(F(P^A)) \longrightarrow H_i(F(P^B)) \longrightarrow H_i(F(P^C)) \longrightarrow \cdots$$

This is

$$\cdots \longrightarrow L_{i+1}F(C) \xrightarrow{\delta} L_iF(A) \longrightarrow L_iF(B) \longrightarrow L_iF(C) \longrightarrow \cdots$$

1.2 Injective resolutions and right derived functors

Definition 1.2. A (comological) resolution of an object A is an augmented complex

$$0 \longrightarrow A \longrightarrow C_{\cdot}$$

which is exact. It is **injective** if the objects of C are injective. C has enough injectives if for all $A \in C$, there is an injective $I \in C$ and a monomorphism $A \to I$.

Proof. If C is abelian, then C has enough injectives if and only if every object has an injective resolution.

Proposition 1.2. *R*-Mod has enough injectives.

Proof. If $R = \mathbb{Z}$, let A be an abelian group. Then $A \cong \bigoplus_{j \in J} / T$, where $T \leq \bigoplus j \in J\mathbb{Z}$, where J is an index set. This maps into $\bigoplus_{j \in J} \mathbb{Q}/T$, which is divisible and hence injective.

If R is arbitrary, let A be an R-module. Let ϕ : $\operatorname{Hom}_{\mathbb{Z}}(R, A)$, where |phi(a)(r) = ra is a map of R-modules. As abelian groups, A injects into a divisible abelian group D. So $\operatorname{Hom}_{\mathbb{Z}}(R, A)$ injects into $\operatorname{Hom}_{\mathbb{Z}}(R, D)$. From homework, $\operatorname{Hom}_{\mathbb{Z}}(R, D)$ is injective as an R-module.

Definition 1.3. If \mathcal{C} is an abelian category with enough injectives and $F : \mathcal{C} \to \mathcal{D}$ is left exact, then the *i*-th right derived functor $R^i F : \mathcal{C} \to \mathcal{D}$ is $P^i F(A) = H^i(F(I))$ for $A \to I$ an injective resolution. For $f : A \to B$ and $g : I \to J$ such that

we have $R^i F(f) = F(g)^*$.

Theorem 1.2. The R^i give a cohomological δ -functor (universal):

 $0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$

gives a long exact sequence

 $0 \longrightarrow F(A) \longrightarrow F(B) \longrightarrow F(C) \xrightarrow{\delta^0} R^1 F(A) \longrightarrow R^1 F(B) \longrightarrow \cdots$

1.3 Tor functors

Lemma 1.2. Let R be a ring, and let N be an $\mathbb{R}^{\operatorname{op}}$ -module. Then we have the tensor product functor $t_N : \mathbb{R}$ -Mod \to Ab given by $t_N(M) = N \otimes_R M$ and $t_N(f) = \operatorname{id}_N \otimes f$. Then t_N is right exact.

Proof. t_N is additive because direct sums commute with tensor products. If we have a right exact sequence

$$A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$$

then $N \otimes_R C$ is generated by the elements $n \times c$ with $c \in C$ and $n \in N$. If c = g(b), then $t_N(g)(b) = n \otimes c$, so $t_N(g)$ is surjective. So we get a surjection $\operatorname{coker}(t_n(f)) \to N \otimes_R C$. We want this to be an isomorphism, so let's try to create an inverse. Define an *R*-balanced map $N \times C \to \operatorname{coker}(T_N(f))$ by $\theta(n,c) = n \otimes b + \operatorname{im}(t_n(f))$. Then g(b) = c. This is well-defined because if g(b') = c, then g(b - b') = 0, so b - b' = f(a) for some a; then $n \otimes b - n \otimes b' + t_N(f)(a)$. So we've constructed an inverse to the surjection.

Definition 1.4. The *i*-th Tor functor is $\operatorname{Tor}_{i}^{R}(N, \cdot) := L_{i}t_{N}$.